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Abstract

A second-order finite difference scheme was employed for the DNS study of drag-reducing flow with surfactant additives. We

focus on the effect of Weissenberg number (nondimensional relaxation time) on the flow structures. The instantaneous flow

structures and stress distribution at different elasticities are compared. The effects of Weissenberg number on turbulence statistics

such as turbulence intensities, Reynolds shear stress and two-point correlation coefficients are also presented.

� 2003 Elsevier Science Inc. All rights reserved.
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1. Introduction

It is well known that a small amount of chemicals

such as water-soluble polymers or surfactants dramati-

cally suppresses turbulence when they are added to liq-

uid flow at large Reynolds number (Toms, 1948). In the
last two decades, the application of surfactants to heat

transportation systems such as district heating and

cooling systems has attracted much interest among re-

searchers. It has been revealed that 70% of the pumping

power used to drive hot water in primary pipelines or

district heating systems was saved by adding only a few

hundred ppm of surfactant into the circulating water.

The technological achievement requires a new design
strategy for pipeline networks and heat exchangers to

handle the drag reducing liquid flow. In the case of a

Newtonian fluid such as water or air, the knowledge for

designing fluid systems has been accumulated and the

accuracy of numerical prediction is sufficient. On the

other hand, the design system for surfactant solutions is

not mature because drag-reducing flow phenomena are

much more complicated than for Newtonian flow, for
example, the friction factor for a surfactant solution

depends not only on Reynolds number but also pipe

diameter. In order to provide a design strategy for heat

transportation systems using surfactant additives, we

are now carrying out both experimental and numerical

studies for surfactant solutions (Li et al., 2001; Yu and

Kawaguchi, 2002).
This paper reports some results of our direct nu-

merical simulations for surfactant solutions. The adop-

tion of an appropriate model is the key for simulating

drag-reducing flow by additives. We have found that

Giesekus model can well describe the measured appar-

ent shear viscosity and extensional viscosity of the

surfactant solution. Therefore we assume that the surf-

actant solution is a Giesekus fluid. Some direct numer-
ical simulations have been done for drag-reducing

polymer solutions, and extensional viscosity models

were employed for simulating the solutions (Orlandi,

1995; DenToonder et al., 1997). Those simulation results

qualitatively agree with most of the experimental ob-

servations. However, the inelastic characteristic of the

extensional models makes it impossible to examine

the onset phenomenon. Recently, viscoelastic models
(FENE-P model and Giesekus model) were employed

and a criterion for the onset of drag-reduction was

proposed (Sureshkumar et al., 1997; Dimitropoulos

et al., 1998). The FENE-P model was shown to be able

to reproduce most of the essential effects of polymers in
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dilute solution on the wall turbulence (Angelis et al.,

2002). The role of elastic energy was studied in turbu-

lence drag-reduction by polymer additives with an

Oldroyd-B model (Min et al., 2001). Suzuki et al. first

attempted to numerically study the drag-reducing flow

with surfactant additives by using a Giesekus model

(Suzuki et al., 2001), but they did not find any drag-

reduction. The present study numerically examines the
effect of Weissenberg number on flow structures for

drag-reducing flow with surfactant additives.

2. Governing equations and boundary conditions

We simulate the fluid motion of the surfactant solu-

tion in a channel. The flow geometry and the coordi-
nates are shown in Fig. 1, in which x, y and z are
the streamwise, normal and spanwise direction respec-

tively. The computational domain size is Lx � Ly � Lz ¼
10h� 2h� 5h. The measured rheological properties of
the surfactant solution agree well with those of a Gies-

ekus fluid (Suzuki et al., 2001; Kawaguchi et al., 2003).

Thus a Giesekus model is used to describe the evolution

of extra stress due to the deformation of macromole-
cules in the surfactant solution. The fluid is assumed to

be incompressible and isothermal with constant prop-

erties. The governing equations for the surfactant solu-

tion can thus be written in dimensionless form as

follows:

Continuity equation:
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In the above equations the following nondimensional

variables are introduced:

x� ¼ x
h
; t� ¼ t

h=us
; uþ ¼ u

us
; pþ ¼ p

qu2s
;

cþij ¼ cij; Res ¼
qush
l þ g

; Wes ¼
kqu2s
l þ g

Conformation component cij is associated with the de-
formation of the long rod-like micelles and it has

a simple relationship with the extra stresses sij as
sij ¼ g=kðcij � dijÞ. The meanings of all the other vari-
ables are given in the Nomenclature. Note that the fluid
motion is characterized by four parameters: Reynolds

number, Weissenberg number, ratio b and mobility

factor a. The larger the Weissenberg number, the

Nomenclature

c conformation tensor

f friction factor

h half height of the channel

p pressure

Rem Reynolds number¼ 2qumh=ðl þ gÞ
Res Reynolds number¼ qush=ðl þ gÞ
Ruu two-point correlation coefficient

t time
t� nondimensional time

u velocity

um mean velocity

us friction velocity

Wes Weissenberg number¼ qku2s=ðl þ gÞ
x coordinate

x� nondimensional coordinate

Greeks

a mobility factor

b ratio of solvent contribution to the total zero-

shear viscosity¼ l=ðl þ gÞ.
g dynamic viscosity of surfactant contribution
k relaxation time

l dynamic viscosity of solvent contribution

q density

Superscripts and subscripts

( )þ normalized by wall units
( )rms root mean square fluctuations

Fig. 1. Coordinate system in channel.
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stronger the elasticity of the solution. In this study, we

are interested in the effect of Weissenberg number on the

flow structures. Thus we performed calculations for

various Weissenberg numbers (Wes ¼ 2, 12.5, 30 and
45), with other parameters fixed as a ¼ 0:001, b ¼ 0:9
and Res ¼ 150. The periodic boundary conditions are
imposed in both the streamwise and spanwise direction,

while the nonslip condition is adopted for the top and

bottom walls.

3. Numerical procedure

A finite difference scheme is used to discretize the

governing equations. A second-order central difference

scheme is used for the spatial discretization except that

MINMOD scheme is adopted for the discretization of

the convective term in the constitutive equation. Nu-

merical simulations of viscoelastic flow are prone to

break down at high Weissenberg number due to the
hyperbolic nature of the constitutive equations. To

overcome this trouble, the artificial diffusion spectral

method (Sureshkumar et al., 1997; Dimitropoulos et al.,

1998) and local artificial diffusion finite difference

scheme (Min et al., 2001) were employed. In a previous

study, we compared the performance of the artificial

diffusion scheme with a high-resolution scheme, MIN-

MOD, for drag-reducing flow with additives in a chan-
nel (Yu and Kawaguchi, 2002), and found that the

MINMOD scheme is much more stable and has higher

spatial resolution than the artificial diffusion method.

Therefore we used the MINMOD scheme in the present

study. For time integration, the Adams–Bashforth

scheme is used for all the terms except that the implicit

method is used for the pressure term. The MAC method

is employed to couple velocity and pressure.
A staggered grid system is used to prevent a check-

board pressure field. That is, velocity components are

located at the cell interfaces while other variables are

located at the nodes. Uniform grids are used in the

streamwise and spanwise directions. Nonuniform grids

are used in the normal direction with denser mesh near

the wall to resolve small eddies. Fig. 2 compares the
mean velocity profile and turbulence intensities by using

two sets of grids: 64� 64� 64 and 64� 128� 64 grids
(in the x-, y- and z-directions, respectively). It can be
seen that the results for the two sets of grids agree well

with each other. To save computational time, the

64� 64� 64 grids are used in the present study. The grid
spacings in the streamwise and spanwise directions are

Dxþ ¼ 23:4 and Dzþ ¼ 11:7, respectively. Dyþ varies
from 0.45 next to the wall to about 9 near the center of

the flow. The time-step used in the present computation

is 0.001 h=us.

4. Results and discussion

Fig. 3 compares the statistical steady-state values for
a ¼ 0:001, b ¼ 0:9, Res ¼ 150 and four Weissenberg
numbers Wes ¼ 2; 12:5; 30 and 45. For comparison, the
results of Newtonian fluid (set b ¼ 1:0 in the momentum
equation) are also presented. The streamwise mean ve-

locity profiles are shown in Fig. 3(a). It is seen atWes ¼ 2,
the nondimensionalized velocity profile is slightly smaller

than that of the Newtonian case. This means that drag is

not reduced but actually increased slightly. For Wes ¼
12:5, 30 and 45, the velocity profiles are up-shifted at the
buffer and logarithmic layers as compared to that of the

Newtonian case. The larger flow rates mean that drag-

reduction occurs. In this study, we define the drag-

reduction rate as the percentage decrease of the friction

factor as compared to Newtonian fluid flow at the same

mean flow Reynolds number based on the height of the

channel, Rem ¼ 2qumh=ðl þ gÞ ¼ 2Resuþm. The calculated
mean Reynolds numbers and the corresponding friction

factors are shown in Table 1. We did not perform the

calculations for the Newtonian cases for those mean

Fig. 2. (Left) The mean velocity profile and (right) root mean square velocity fluctuations for a ¼ 0:001, b ¼ 0:9, Res ¼ 150 and Wes ¼ 30 and with
two different grids: 64� 64� 64 grids (solid line) and 64� 128� 64 grids (dashed line).
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Reynolds numbers, but estimated the friction factors at

those Reynolds numbers by using the experimental cor-

relation f ¼ 0:073ðRemÞ�0:25 (Dean, 1978), and obtained
the drag-reduction rates listed in Table 1. Apparently the

drag-reduction rate at Wes ¼ 12:5 is appreciable. We

performed the calculation for the case Wes ¼ 8, and no
appreciable drag-reduction was observed. Thus using the

MINMOD scheme, the onset Weissenberg number ob-

tained in the present study is around 10. Note that no
appreciable drag-reduction is obtained at Wes ¼ 12:5 by
the artificial diffusion spectral method (Sureshkumar

et al., 1997; Dimitropoulos et al., 1998). A higher onset

Weissenberg number 12:5 < Wes < 25 was predicted.

This indicates that the artificial diffusion term reduces the

accuracy of the solution. Moreover, it is clear from Fig.

3(a) that the larger the Weissenberg number, the larger

the buffer layer becomes.

Table 1

Mean Reynolds numbers, friction factors and drag-reduction rate

Weissenberg number 12.5 30 45

Mean Reynolds number 4838 6180 6936

Friction factor 0.00769 0.00471 0.00374

Drag-reduction rate (%) 12.1 42.8 53.2

Fig. 3. Statistical steady-state values for Newtonian fluid at Res ¼ 150 and surfactant solution at a ¼ 0:001, b ¼ 0:9, Res ¼ 150 and various
Weissenberg numbers Wes ¼ 2, 12.5, 30 and 45. (a) Mean velocity profile; (b)–(d) root mean velocity fluctuations; (e) correlation coefficient of u0þ and
v0þ; (f) Reynolds shear stress.
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Fig. 3(b)–(d) compares the root mean square velocity

fluctuations. It can be seen that for the smallest Weiss-

enberg number Wes ¼ 2, the turbulence intensities are
almost the same as those of Newtonian results. As

Weissenberg number increases, the root mean square

velocity fluctuations in the streamwise direction are en-

hanced. The larger the Weissenberg number, the larger

uþrms becomes. As compared to Newtonian results, the
location of the maximum uþrms shifts toward the center-
line of the channel for drag-reduction cases. The larger

the drag-reduction rate, the further the location shifts to

the bulk flow. This corresponds to an increased buffer

layer with the increase of Weissenberg number. The root

mean square velocity fluctuations in the normal direc-

tion decrease with the increase of Weissenberg number.

On the whole, the root mean square velocity fluctuations
in the spanwise direction also decrease with the increase

of Weissenberg number except that at the center part of

the channel, they are increased for the Wes ¼ 30 and 45

Fig. 4. Contours of instantaneous cþxx in the middle vertical x–y plane of the channel for the Giesekus fluid flow at a ¼ 0:001, b ¼ 0:9, Res ¼ 150 and
four Weissenberg numbers: (a) Wes ¼ 2; (b) Wes ¼ 12:5; (c) Wes ¼ 30 and (d) Wes ¼ 45. Contour levels for Wes ¼ 2, 12.5, 30 and 45 are 1.5–11, 37–
545, 68–857 and 107–1520, respectively.

Fig. 5. Root mean square fluctuations for conformation component cþxx
at a ¼ 0:001, b ¼ 0:9, Res ¼ 150 and four Weissenberg numbers
Wes ¼ 2, 12.5, 30 and 45.
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cases. We can see that the appreciable enhancement of

uþrms and the depression of v
þ
rms and wþ

rms are located at

the buffer layers, while in the corresponding logarithmic

layers, the turbulent intensities do not change very
much. This clearly shows that the surfactant additives

primarily affect the phenomena occurring in the buffer

layer.

Fig. 3(e) compares the velocity correlation coefficients

for u and v. It is seen that as the Weissenberg number
increases, the correlation coefficients decrease. The lo-

cation of the maximum correlation coefficient shifts to
the bulk flow as compared to the Newtonian case and

nondrag-reduction case Wes ¼ 2. Fig. 3(f) compares the
Reynolds shear stress profiles. It is seen that the larger

Fig. 6. Instantaneous velocity fluctuation field in the middle vertical x–y plane of the channel for (a) Newtonian fluid at Res ¼ 150 and surfactant
solution at a ¼ 0:001, b ¼ 0:9, Res ¼ 150 and four Weissenberg numbers: (b) Wes ¼ 2; (c) Wes ¼ 12:5; (d) Wes ¼ 30 and (e) Wes ¼ 45.
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the drag-reduction rate, the smaller the Reynolds shear

stress becomes. The location where the Reynolds shear

stress reaches a maximum also shifts to the bulk flow for

drag-reduction cases as compared to the Newtonian case.
Fig. 4 shows the instantaneous contour maps of the

conformation component cþxx in the middle vertical x–y
plane of the channel. It is seen that as the Weissenberg

number increases, the value of cþxx increases greatly. The
gradients near the wall become larger as the Weiss-

enberg number increases. From this figure, we can partly

explain why the calculation easily breaks down as the

Weissenberg number increases. The steep conformation

gradient is difficult to be captured accurately. Using

high-order finite difference schemes or the spectral

method, the steep gradients cannot be accurately cap-
tured and a negative eigen-value of the conformation

tensor can be predicted. The unphysical values change

the flow dynamics and usually result in breakdown of

the solution. To prevent the numerical breakdown, ar-

tificial diffusion methods both for the spectral method

and finite difference scheme were used by Sureshkumar

et al. (1997), Dimitropoulos et al. (1998), and Min et al.

Fig. 7. Instantaneous snapshot of streamwise velocity fluctuation in the x–z plane at yþ ¼ 15 for (a) Newtonian fluid at Res ¼ 150 and surfactant
solution at a ¼ 0:001, b ¼ 0:9, Res ¼ 150 and four Weissenberg numbers: (b) Wes ¼ 2; (c) Wes ¼ 12:5; (d) Wes ¼ 30; (e) Wes ¼ 45.
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(2001), respectively. The calculation did not break down

till Wes ¼ 50 for the Giesekus fluid by using the artificial
diffusion spectral method. However, too large artificial

diffusion may greatly flatten the steep stress gradient
(Yu and Kawaguchi, 2002) and the solution accuracy

deteriorates. Therefore the high-resolution schemes such

as MINMOD, which have been demonstrated to have a

good capability to capture steep gradients, appear a

good choice for the realistic simulation of turbulent

viscoelastic flow.

Fig. 5 compares the root mean square of cþxx fluctua-
tions. It is seen that the conformation fluctuations
become much stronger as the Weissenberg number in-

creases. We believe that the strong fluctuations at high

Weissenberg number may be another cause of the nu-

merical instability and our calculation broke down in the

cases of an even higher Weissenberg number, Wes ¼ 60.
Fig. 6 shows instantaneous snapshots of the velocity

fluctuation fields in the middle vertical x–y plane of the
channel at different Weissenberg numbers (the stream-
wise velocity components are subtracted by a local mean

velocity uþðyÞ). For comparison, an instantaneous ve-
locity field for the Newtonian case is also presented. It

is clearly seen that the flow structure of the no drag-

reduction case (Wes ¼ 2) is similar to the Newtonian
case. As the Weissenberg number increases the vortex

structure becomes elongated in the streamwise direction,

especially in the region near the walls. In Fig. 6(e), at the
region near the bottom wall the fluid flows from right to

left, which means that elongated low-speed streamwise

streaks exist. To solve the larger flow structure, a larger

computational domain may be required. The effect of

computational domain size on the solutions is now being

studied by our research group.

Fig. 7 shows instantaneous snapshots of the stream-

wise fluctuating velocity in the x–z plane at yþ ¼ 15. It is
seen that as the Weissenberg number increases the low-

speed streaks become more elongated and the average

spacing of the streaks becomes wider. The larger spacing

is connected with the larger flow structure such as that

shown in Fig. 6. Fig. 8 shows the two-point correlations
of streamwise velocity Ruu in the spanwise direction. The

separation at which the minimum Ruu occurs can be used

to estimate the mean spacing between high- and low-

speed streaks, that is, the mean streak spacing is roughly

twice the distance to the negative peak. It is seen more

clearly from this picture that as the Weissenberg number

increases the streak spacing becomes larger.

5. Conclusion

The MINMOD scheme is used for the DNS study of

surfactant solutions in a channel with a Giesekus model.

We wished to investigate the effect of Weissenberg

number on the flow structure, so in this study we changed

the Weissenberg number Wes from 2 to 45 with other
parameters remaining fixed: a ¼ 0:001, b ¼ 0:9 and
Res ¼ 150. From the numerical simulations, the follow-
ing conclusions can be drawn. As the Weissenberg

number increases the flow structures become larger. The

larger the drag-reduction rate, the larger uþrms increases
and the smaller vþrms and wþ

rms decrease. The Reynolds

shear stress becomes smaller as the Weissenberg number

increases. As theWeissenberg number increases, both the
streak spacing and the drag-reduction become larger.

The onset Weissenberg number obtained in the present

study was around 10, and the maximum drag-reduction

obtained was 53%. We also partly explained why the

calculations tend to break down in the case of high

Weissenger number for viscoelastic flow simulation.
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